Ricci Curvature on Polyhedral Surfaces via Optimal Transportation

نویسندگان

  • Benoît Loisel
  • Pascal Romon
چکیده

The problem of correctly defining geometric objects, such as the curvature, is a hard one in discrete geometry. In 2009, Ollivier defined a notion of curvature applicable to a wide category of measured metric spaces, in particular to graphs. He named it coarse Ricci curvature because it coincides, up to some given factor, with the classical Ricci curvature, when the space is a smooth manifold. Lin, Lu and Yau and Jost and Liu have used and extended this notion for graphs, giving estimates for the curvature and, hence, the diameter, in terms of the combinatorics. In this paper, we describe a method for computing the coarse Ricci curvature and give sharper results, in the specific, but crucial case of polyhedral surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial Ricci Curvature for Polyhedral Surfaces and Posets

The combinatorial Ricci curvature of Forman, which is defined at the edges of a CW complex, and which makes use of only the face relations of the cells in the complex, does not satisfy an analog of the Gauss-Bonnet Theorem, and does not behave analogously to smooth surfaces with respect to negative curvature. We extend this curvature to vertices and faces in such a way that the problems with co...

متن کامل

On the properties of the combinatorial Ricci flow for surfaces

We investigate the properties of the combinatorial Ricci flow for surfaces, both forward and backward – existence, uniqueness and singularities formation. We show that the positive results that exist for the smooth Ricci flow also hold for the combinatorial one and that, moreover, the same results hold for a more general, metric notion of curvature. Furthermore, using the metric curvature appro...

متن کامل

Ricci curvature , entropy and optimal transport – Summer School in Grenoble 2009 – ‘ Optimal Transportation : Theory and Applications

These notes are the planned contents of my lectures. Some parts could be only briefly explained or skipped due to the lack of time or possible overlap with other lectures. The aim of these lectures is to review the recent development on the relation between optimal transport theory and Riemannian geometry. Ricci curvature is the key ingredient. Optimal transport theory provides a good character...

متن کامل

Curvature of Hypergraphs via Multi-Marginal Optimal Transport

We introduce a novel definition of curvature for hypergraphs, a natural generalization of graphs, by introducing a multimarginal optimal transport problem for a naturally defined random walk on the hypergraph. This curvature, termed coarse scalar curvature, generalizes a recent definition of Ricci curvature for Markov chains on metric spaces by Ollivier [Journal of Functional Analysis 256 (2009...

متن کامل

On Randers metrics of reversible projective Ricci curvature

projective Ricci curvature. Then we characterize isotropic projective Ricci curvature of Randers metrics. we also show that Randers metrics are PRic-reversible if and only if they are PRic-quadratic../files/site1/files/0Abstract2.pdf

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Axioms

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014